FizZim — an open-source FSM design environment

Paul Zimmer
Zimmer Design Services

Michael Zimmer
Zimmer Design Services
(and University of California, Santa Barbara)

Brian Zimmer
Zimmer Design Services
Zimmertech
(and University of California, Davis)

Zimmer Design Services
1375 Sun Tree Drive
Roseville, CA 95661

paulzimmer@zimmerdesignservices.com

website: www.zimmerdesignservices.com

ABSTRACT

Finite State Machine design is a common task fotCA8esigner engineers. Many designers
would prefer to design FSMs in a gui-based enviremtmbut for various reasons no commercial
tool for this task has really achieved wide-spraadeptance. The authors have written such a
graphical FSM design tool, and offer it to the @egring community for free under the GNU
public license. The gui is written in Java for taduility, while the back-end code generation is
written in Perl to allow for easy modification. h& paper will describe the basic operation of the
tool and the format of the Verilog it produces,rtlgo on to describe some of the more advanced
features and how they affect the Verilog output.

=2 FILLIM

The FSM Design Tool

Fizzim 2 Fizzim

Table of contents

1 Introduction - What iS fIZZIM?unieem e e et 4
A - 111 0o I {474 | o P PRSPPI 5
2.1 WINAOWS ...ttt e e oo ettt ettt oo oo oo e e e ettt et e e e e e e e et e e et b bbb e e e e e e e e e e e e e e e e 5
A | 1) PSSP TR 5
G €U] N o = 11 (01U PPPTRRN 6
N 1 101U 1 (S PPN 7
S = oo Lo [T 3PP PPN 8
5.1 Highly Encoded with Registered Outputs as SIEHEHEROS)............ccooiiiiiiiiiiiiiiie e 8
T2 O g [IN [o PP 8
B ClIfF'S ClAaSSIC ...uu ittt e e e e et e e eaans 9
6.1 Creating the SEAtES ...t e et et e et e e e et e e e ettt e e e e e bt e e e e eaba e e e e esbaaaaas 10
6.2 Creating the tranSITIONSc.u. e et e e e et e e e ettt e e e e eeta e e e e eebaaaeaans 12
6.3 FilliNG iN Tthe ELAIISo e e e et e et et e e e et e e e esbaaaes 15

6.3.1 GIODAl AUIIDULES ... e e 15
6.3.2 Individual State AMIDULIES........ooeiiiii e 22
6.3.3 Individual Transition AFDULESooii e 24
6.4 OULPUL USING NBIOS ... ittt eeeeei ettt e e ettt oo et e e e et b e e e e e et e e e e estba e eaeeebnn e aaeenans 25
6.5 OULPUL USING ONENOL ...ttt oot et e e e e et e et e e e e e ebb e e e e eata s e eeeebannaeaens 29
6.6 ASCIT STALE NMAMIE ..ot e ettt e e e e e e e bbb e e e e e e e e e e et e e e e a bbb e e e e eeens 32
6.7 (Un)Displaying the attributes table oo 33
T MEAIY OULPULS ...ttt ot ettt e e et e e ettt e e e et s e e e e e et e e e eanaeeeannaeaees 35
7.1 Mealy outputS aSSIGNEA IN STALEScemmmmeeeeti e ettt e ettt e et e et e e e et e e e ettt e e e eeetnn s e aeeebbnaaaaes 35
7.2 Mealy outputs assigned 0N traNSITIONS.....cooiaiuii e e e e et e e e eaa e aaees 38
7.3 MIXING T SEYIES ...ttt oottt e e e et e e e ettt s e e e ee bt e e e e eaaa e e eeesbanaaas 42
8 Datapath QULPULS......ceu i e e e e e e e 43
S I I = 101571 €0 0 1 o 4o 1 | PP 50
9.1 BASIC EXAMPIE. ... ettt oottt e e e e et e e e e et e e e e e e e ebaaaas 50
9.2 The special case of equation EQUAI 0 1. ... e e e aea s 53
10 Brief overview of advanced fEatUreS... ... eeeriiiiiiie e 57
F0.1 GrAY COUBS. ... eieeti ettt ettt oottt e e e et e bt e e et e et e e e et e ba e e aaeaa e e e e e ettt e e eeebba e eeeesbnn e e aaearannaannns 57
OS] (1] o TP PPPPRPRRPP 57
10.3 Controlling iNternal SIGNAIS e et e e e et e e et e e e eeeans 57
O [=T U g I oo o [USRS 57
F0.5 COMIMENES ...ttt e e e e e et e e e e e et et e et e ar e e e et e ab s r e e e e arb e e r e e s 57
10.6 MUIIPIE PAOES ...t eeiieit ettt st oo ettt e ettt e e e ettt e e e e mee e e e th e e e e et ba e e e e eeta e e eaeebban e eaeeenns 58
10.7 FOrciNg the STAE VECTONuut s oottt e ettt e e et s e e e et b e e e e e bt eeeeeaba e e eeennnn s 58
10.8 Controlling and SUPPresSiNg WarNiNg MESSAGES ... eeeerruunaaeeuuniaaeertunaateeaaaeertnnaaeeesnnaaaeeriaaaes 58
10.9 Printing and exporting the state diagram........ ..o ettt e e 58
11 Future directions / WISh IStoou e 59
12 (70} 3 o] 11 153 0] o 1R PP 60
13 ACKNOWIBAGEMENTSot e e 61
14 LY (=] (=] (o =T PP PPPR 62

Fizzim 3 Fizzim

1 Introduction - What is fizzim?

Finite State Machines come up frequently in digiegign. Sometimes designers code them
directly in Verilog, but many designers prefer &sigin their FSMs as a state diagram (“bubbles
and arrows”). This diagram must then be manuedigdlated into Verilog.

For these designers, it would certainly be handyesign the FSM directly in a graphical tool and
allow the software to generate the Verilog codéeré have been several attempts by various
EDA companies, large and small, to provide suabod but nothing has really gotten much
traction.

This may be because the tool is in a strange nitthis.really too small to support business on an
EDA scale, but it is too large for a “G-job”. Alsthe graphical part of the G-job is outside the
usual experience of hardware designers.

So, it seems a good candidate for an open souogecprprovidedsomeone is willing to tackle
that nasty graphical part.

Someone has! Paul Zimmer and his young interdganer Design Services, Mike Zimmer and
Brian Zimmer, are proud to present fizzim — an epeuarce, graphical FSM design environment.

Throughout this paper, it is assumed that the reiadamiliar with FSMs and common FSM-

related terms (such as Moore and Mealy). If tlzelee is unfamiliar with some of this material,
just read through some of the papers in the “rafegg” section.

Fizzim 4 Fizzim

2 Starting fizzim

The fizzim gui is written in java. It is distribed as a “.jar” (java archive) file. We run it ugin
Sun Java Runtime Environment. Odds are that yeady have this loaded for your browser, but
if not you can download it from java.sun.com.

2.1 Windows

On most Windows machine, Java Runtime Environméhalneady be registered as the correct
app for “.jar” files, so just double-clicking onetiile should start it. If that doesn’t work, yoan
start a terminal window and use the command-lir@gch as in Linux below.

2.2 Linux

On linux, try right-clicking the file and selectgen using”. If java runtime is listed, you're in
business. You can also run from the command Enagu

java —jar fizzim.jar

Fizzim 5 Fizzim

3 GUI basics

The gui is pretty intuitive. Right-click in opepace gives you a menu to create new states and
transitions. Right-click on an object gives yomanu to edit the object. Double (left) click on an
object will bring up the properties menu for thajet.

Left-click and drag to move an object. You canugrebjects for moves by either selecting them
with a “box” or using click, ctrl-click.

Edit>undo or ctl-Z will undo, Edit>redo or ctl-Y iMedo. Undo/redo is unlimited.

Fizzim 6 Fizzim

4 Attributes

It is our belief that few hardware engineers wilnwto touch the gui, but many will want to
modify the Verilog output. In recognition of thsyery attempt has been made to try to keep the
gui as independent of the Verilog generation asipkes

To accomplish this, virtually everything is implembed as “attributes”. This should allow new
backend (Verilog-generation) features to be addéubwt touching the gui. Also, while the gui
is written in Java, the backend is in the lingax@aof EDA — perl.

There are only 3 types of objects to the gui —stiaée machine itself, states, and transitions.hEac
of these can have attributes assigned to it. 8umé ®nd transition object attributes have to be
defined first in the global “states” and “transitsj attribute menus before they will be available i
individual states and transitions. The gui knowsw a few special attributes, but only those that
require that the display be modified. Exampletuthe transition equations (drop the “equation

=" on the visible text) and output types (use “ef tombinational and “<=" for registered).

Inputs and outputs are just attributes. The naetekis the name of the input or output signal.

Each attribute has 5 fields:

e Attribute Name — this is the name of the input otput, or the name of the special
attribute.

e Default Value — Default value of the attribute. IIMye used if no value is assigned in a
state/transition.

e Visibility — Turns on/off visibility on the display“Only non-default” means to only show
the attribute if its value doesn’t match “Defauklve”.

e Type — Information about the attribute. Inputsreatly have no defined type, outputs
can be “reg”, “regdp”, or “comb”. Others are ditrie-specific.

e Comment — An optional comment that will show uptl@ diagram, in the Verilog, both,
or neither, depending on the attribute.

e Color — Text color.

Fizzim 7 Fizzim

5 Encodings

There are two primary types of state encodings t@eBSM design. Highly encoded FSMs use
a dense binary code and few flops but can somet¥aes very complex combinational logic.
One-hot FSM encodings, on the other hand, useraespade and many flops, but usually have
much simpler combinational logic. There are masaygrs on the advantages and disadvantages
of each (reference [2] is one example).

The backend perl script (fizzim.pl) supports bothhese encodings.

5.1 Highly Encoded with Registered Outputs as StatebittHEROS)

Heros is an encoding that uses a dense binary chsl¢éhe name implies, registered outputs will
be encoded into the states to minimize flop codritere are mechanisms (discussed below) to
allow particular outputs to be excluded from thetestvector. The actual Verilog format is based
on recommendations from Cliff Cummings’ paper (refee [3]).

5.20ne Hot

One-hot encoding is also supported. The Veriloghéd is based on Steve Golson’s paper
(reference [2]). Some features, such as gray ctrdeditions, are not available with one-hot
encoding.

Fizzim 8 Fizzim

6 Cliff's Classic

Let’s jump right in with an example. In [3], Cl@ummings introduced the following basic state
machine:

Here’s how we would create this in fizzim.

Fizzim 9 Fizzim

6.1 Creating the states
Right-clicking in open space gives the followingrme

File Edit Global Attributes Help

Cuick New State
New State
New State Transition

New Loopback Transition
New Free Text

We select “New State” and get this:

Edit State Properties E|

Edit the properties of the selected state:
Attribiute Mame Wallue Wigibility Type Comment Colar
name statel RS tef_type
Width: [130 |
Height: [130 |
OK Cancel

Fizzim 10 Fizzim

Change the state name to “IDLE” and hit “OK”.

Repeat this to add the other three states. liek-and drag to move the states around.

STATE MACHINE

name def_name

clock clk posedge
TRANSITIONS

eguation 1 def_type

Fizzim 11 Fizzim

6.2 Creating the transitions

To create the state transitions, we can eithet-aligk in open space and select “New State
Transition” and get the full menu:

Edit State Transition Properties

Edit the properties of the selected state transition:
Aftribute Mame Yallue Wigibility Type Camment Caolar
name transi [0 def_type
eruation 1 YRS def_type
Start State: [DLY |+ [| stub?
End State: DONE |« oK cancel

Fizzim 12 Fizzim

Or we can right-click on the start state and selgdt State Transition to”:

DLY

Add Loopback Transition

Add State Transition to... *| IDLE
Edit State Properties READ
Move to Page... ¥ DONE

We repeat this to add all the transitions. Dooigét to add the loopback transition. We’'ll see
why this matters in a moment.

Fizzim 13 Fizzim

Notice that when we add the transition from DLY lbé@ READ, we get something like this:

STATE MACHINE

name def_name

clock clk posedge
TRANSITIONS

eguation 1 def_type

That doesn’t look so great, so we need to moveobtige transitions. To do this, left-click to
select it. Endpoints and anchorpoints appeatr:

DLY

Fizzim 14 Fizzim

Drag the endpoints to a new location, then dragttanorpoints to reshape the curve. The
anchorpoints on the ends of the arc control wHeeeatc intersects the state bubble. The other
two control the shape of the curve.

If you move a state bubble, the attached arcawailte with it. As long as the move isn't too
drastic, the anchorpoint modifications you madé lvélretained. If you move the state a lot, the
anchorpoints may get reset. This works better ihsounds. Mostly your anchorpoints are
retained when it makes sense.

All text, including the transition equation (the’“dbove), output values in states, state names,
and free text, can be moved by just selectingdtraoving it.

Don't forget to add the loopback transition. We#le why this matters in a moment.

6.3 Filling in the details

6.3.1 Global Attributes

Recall that everything is stored as attributegheeiattributes on the FSM itself or attributes on
individual states and transitions. So, adding tepautputs, transition equations, etc is a matter
of editing attributes.

Let's start with the global FSM attributes. ltiscessary to start here, because the individual
state and transition attributes won't appear unély are entered as global attributes.

Fizzim 15 Fizzim

Select “Global Attributes > State Machine” from tiogg menu:

im - cliff_classic_juststatesandtransitions.fzm
File Edit | Global Attributes | Help

STATE| State Machine a
name| [nputs P
clock osedge

TRANg| Outputs
equat] States ef_type

Transitions

Create New Page Page1 X

Fizzim 16 Fizzim

And you get this:

Edit Global Properties

l/ State Machine |/ Inputs |/ Outputs |/ States |/Transitinns

%]

Here you can change the global attributes of all objects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.'

Atribute Mame | Defaultalue Yisibility Tvpe Comment Color
narne def_name [
clock clk [posedge

Delete User Reset

OK Cancel

Edit the fields to fill in the module name “cliffthe clock name “clk”, and make it a posedge clk.

Click the “Reset” button, and two more attributpp@ar. One is “reset_signal’. Change this to
“rst_n", negedge. Set “reset_state” to IDLE via pull-down menu and set its type to
“anyvalue” (“allzeros” and “allones” will force theeset state to be all zeros or all ones, but this
isn't compatible with onehot encoding, so we warse it on this example).

Fizzim 17 Fizzim

Edit Global Properties

l/ State Machine |/ Inputs |/ Outputs |/ States |/Transitinns

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.’

Attribiute Mame | Defaultalue Wisibility Type Comment Colar
narre cliff [
clock clk [0 posedge
reset_signal rst_n [0 negedge
reset_state IDLE [+l ammalue
Delete User Reset
OK Cancel

X]

Hit OK. Notice that IDLE now has a double ringindicate it is the reset state.

Now select “Global Attributes > Inputs” from theptonenu.

Fizzim

18

Fizzim

Use the “Input” button to add the inputs:

Edit Global Properties [z|
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.'
|/ State Machine |T Inputs r Outputs |/ States |/Transitiuns

Aftribute Mame | Default Yalue Yisibility Tvpe Comment Colar
clk [
rst_n [
(s [u] [
WS [
Delete User Input Multibit Inpurt
OK Cancel

Note that “type” doesn’t matter for inputs. We fwbalick OK, then reselect “Global Attributes
> Qutputs” from the top menu, or we can just switzlhhe “Outputs” tab without exiting the
menu.

Click “Output” twice to add the two outputs, “rdhd “ds”. Their type field should be “reg”.
Set “Default Value” to 0, and visibility “Yes”.

Fizzim 19 Fizzim

Edit Global Properties

3

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

(State Machine r Inputs |T Outputs r States |/Transitiuns

Aftribiute Mame Default Walue Wigibility Type Comment Caolar
rd I} eS req
s I} eS req
Delete User Output Muktibit Output
0K Cancel

This will become clearer later, but type “reg” medhat they are registered outputs (Moore) and
that they should be encoded as state bits.

Now flip over to the “States” tab. “rd” and “dsbw appear as state attributes. This means you
will be able to assign particular values to themanticular states.

Fizzim 20 Fizzim

%]

Edit Global Properties

Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’
(State Machine r Inputs r Outputs |T States rTransitiuns |
Aftribiute Mame Default Walue Wigibilit Type Comment Caolar
narme def_name eS def_type
rd I} eS output
s I} eS output
Delete User
OK Cancel

Flip over to the “Transitions” tab. “rd” and “dglo NOT appear here, because it makes no sense
to define registered outputs on a transition. Jaadard attribute “equation” DOES appear here,
with the default value of “1”. Leave it alone. Brou can change the “Visibility” field to “Only
non-default” to make the “1” equations not showoupthe diagram.

Fizzim 21 Fizzim

Edit Global Properties

Here you can change the global attributes of all obhjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.”

r State Machine r Inputs r Outputs r States rTransitinns

Attribute Mame| Default Yalue Wisibility Type Comment Calor
harre def_name [def_typhe

equation 1 Cnly non-def... |def_type

I
Delete User Graycode Ourtpurt Priority
OK Cancel

6.3.2 Individual State Attributes

Now we can enter the output values into the staistice that the outputs now appear on the
states with a “<=" after them. This indicates s¢gried outputs (“=" means combinational).

Fizzim 22 Fizzim

STATE MACHINE
name cliff
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalus

INPUTS
clk
rst_n
go
WE
QUTPUTS
rd 1] reg
ds o] reg
STATES
] 1] output
ds 0 output
TRANSITIONS
eguation 1 def_type

Now we need to enter the non-default values fand ds. Right-click on the READ state and
select “Edit State Properties” to bring up the mef@u just double-click the READ state bubble.
Change the value of rd to “1”".

Edit State Properties ['5__<|
Edit the properties of the selected state:
Attribute Mame Yalue Yisibility Type Comment Caolar
narme READ RS def_type
rol 1 NiE: aLtput
s 1] RS output
Width: 130 |
Height: |130 |
OK Cancel

Fizzim 23 Fizzim

Do this for the other states to add appropriatpuinalues (rd = 1 in DLY, ds = 1 in DONE).

6.3.3 Individual Transition Attributes

Double-click on the IDLE to READ transition to bgirup the transition menu. Change the

equation to “go”.

Edit 5tate Transition Properties

Edit the properties of the selected state transition:
Attribiute Mame Yalue Wigibility Type Comment |Colar
narme trans1 o def_type
equation oo Cnly non-default|def_type
Start State: [IDLE |+ [| Stub?
End State: READ |+ oK cancel

Hit “OK”. Now click on the “go” text and move it:

Repeat this for the state transition from DLY b&ziREAD that has an equation of “ws”.

Our final state diagram looks like this.

Fizzim 24

Fizzim

STATE MACHINE
name cliff
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalus
INPUTS
clk

rst_n

go

WE
QUTPUTS

rd 1] reg

ds o] reg
STATES

] 1] output

ds 0 output
TRANSITIONS

eguation 1 def_type

You might have noticed that | did not put an expfigo” on the IDLE loopback transition, nor
an explicit “lws” on the DLY to DONE transition. h&t is because fizzim understands that a
transition with an equation of “1” is the defaddtyest priority, transition. This will be explae
in the section on transition priorities. Yoan add the explicit equations, but you don’t have to.
6.4 Output using heros

Now we can run the backend and generate code:

fizzim.pl < cliff.fzm > cliff.v

The default encoding is heros. Take a look abtitput.

It is structured as two “always” blocks per [2]héTfirst one is combinational and does the next
state determination, and the second is sequentiglat infers the flops. See [2] for an

explanation of why this is the preferred impleméota

Let's look at the output code in detail.

Fizzim 25 Fizzim

First, the module statement:

module cliff (
output wire ds ,
output wire rd ,
input wire clk
input wire go ,
input wire rst_n
input wire ws);

Nothing special there, except that it uses theldg2001 format.

Now look at the state encoding:

/Il state bits

parameter

IDLE = 3'b000 , //extra=0 rd=0 ds=0
DLY = 3'b010 , //extra=0rd=1 ds=0
DONE= 3'b001 , //extra=0rd=0 ds=1

READ = 30110 ; //extra=1rd=1ds=0

reg [2:0] state
reg [2:0] nextstate

Recall that the heros format uses registered osiggistate bits. Fizzim.pl has assigned state bit
0 to “ds”, and state bit 1 to ‘rd”. There are ofdyr states, but DLY and READ both have
state[1:0] equal to 01, because they have identadaés of “ds” and “rd”. fizzim.pl recognizes
this, and adds an “extra” bit to distinguish thetes. Thus, we end up with 3 state bits to cover
4 states, but since the registered outputs arededda the states, we still have fewer flops
overall. It is possible to force fizzim.pl to ptitie output bits out of the state vector by chapgin
their type to “regdp”. See the section on datapaiiputs below.

Also note that the IDLE state ended up as all zetnghe absence of a requirement that would
prevent this, fizzim.pl heros encoding will favbietreset state as all zeros.

Fizzim 26 Fizzim

Next comes the combinational always block:

/I comb always block
always @* begin
/I Warning: Neither implied_loopback nor default_st ate_is_x attribute is
set on state machine - this could result in latches being inferred
case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY: begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

Pretty straightforward, and just what you wouldhably write if you were coding this by hand.
There’s a big case statement on “state”, and {ha&$(go and ws) determine “nextstate”. But
notice the warning message.

/I Warning: Neither implied_loopback nor default_st ate _is_x attribute is set
on state machine - this could result in latches bei ng inferred

We have come to a philosophical fork in the road.

Some people, including Cliff Cummings, like to make default value of the nextstate vector
equal to “X” before executing the “case” statemenhis ensures that bad things will happen in
simulation if the case statement is wrong, bulsib aneans that all loopback conditions need to be
entered explicitly.

Other people prefer to make nextstate equal teentistate before executing the case statement.
This means that the default action is loopbackysexplicit loopbacks are required.

Fizzim 27 Fizzim

Fizzim.pl is philosophically neutral on this (an@shother such issues), so you can choose which
way you want it. This is done by setting an attidon the FSM — either “default_state is_x" or
“implied_loopback”.

Since this is Cliff's state machine, we’ll do itif€$ way. Select “Global Attributes > State
Machine” and click the “User” button. Enter théridute name “default_state is_x” and give it a
value of “1”:

Edit Global Properties [Z|
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to "Edit Properties.’

l/ State Machine |/ Inputs |/ Outputs |/ States |/ Transitions

Aftribute Mame | DefaultValue Wisikility Type Camment Calar

namme cliff e [u]

clock clk [0 posedge

reset_signal rst_n [0 negedge

reset_state IDLE [0 ammalue

default_state_i.. [1] Mo

Delete User Reset
OK Cancel

Save the file and re-run fizzim.pl. The warningssage goes away and the combinational block
starts like this:

/I comb always block
always @* begin

nextstate = 3'bx ; [/ default to x because default_state is x is set
case (state)
IDLE: begin

By the way, if we had used “implied_loopback” (desattribute “implied_loopback” and set it to
1), the output would have looked like this:

/I comb always block
always @* begin

nextstate =state ; //defaultto hold value because implied_loopback i S
set
case (state)
IDLE: begin

Fizzim 28 Fizzim

Continuing with our tour of the heros output, wetrigave the code that assigns the outputs to
state bits:

/I Assign reg'd outputs to state bits
assign ds =state [O0];
assign rd =state [1];

Then the sequential always block. Recall that etdl®e “reset_signal” attribute to “rst_n" and
it's type as “negedge”. The “reset_state” wadGetDLE™:

/I sequential always block
always @(osedge clk or negedge rst_n) begin
if (I'rstn)

state <= |DLE;
else
state <= nextstate
end

If we had instead chosen the type as “negative”ywwveld have gotten an active-lasynchronous
reset:

/I sequential always block
always @(osedge clk) begin
if (I'rstn)

state <= |DLE;
else
state <= nextstate
end

The final bit of code is for simulation purposesl avill be explained in “Ascii state name” below.

6.5 Output using onehot

The onehot encoding is based on Steve Golson's papeThis technique doesn't really allow
for the “default_state_is_x" behavior, so this ibtite is ignored.

fizzim.pl —enc onehot < cliff.fzm > cliff.v

Fizzim 29 Fizzim

Skipping over the module statement, here’s what'state encoding” looks like:

/I state bits

parameter
IDLE = 0
DLY = 2,
DONE= 1,
READ = 3;

reg [3:0] state
reg [3:0] nextstate

Recall that onehot encoding uses one bit for etath.s So, 4 states means 4 bits. The parameter
refers to the bit position in the vector. So, whas FSM is in state DONE, for example, only bit
1 will be set (the state vector will be 0010).

The combinational always block looks equally bizarr

/I comb always block
always @* begin

nextstate = 4'b0000 ;
case (1'bl) /I synopsys parallel_case full_case
state [IDLE]: begin
if (go) begin
nextstate [READ = 1'b1 ;
end
else begin
nextstate [IDLE] = 1'b1 ;
end
end
state [DLY]: begin
if (ws) begin
nextstate [READ = 1'b1 ;
end
else begin
nextstate [DONE = 1'b1 ;
end
end
state [DONE begin
begin
nextstate [IDLE] = 1'b1 ;
end
end
state [READ: begin
begin
nextstate [DLY] = 1Db1 ;
end
end
endcase
end

Fizzim 30 Fizzim

The “case (1'bl)... state[IDLE]” gets translated tean “when the IDLE bit of the state vector
(bit 0) is a 1”. The nextstate is calculatedibst fsetting it to all zeros, then turning on thie b
that represents the next state.

Note that, because of the way it is coded (setl es0s, then set the bit), the issue of defagltin
the value doesn't arise for onehot. If somethingsggwrong, you get an illegal all-zeros state
which you never get out of.

The sequential always block looks like this:

/I sequential always block
always @(osedge clk or negedge rst_n) begin
if (I'rstn)

state <= 4’0001 << IDLE;
else

state <= nextstate

end

It seems simpler to just set state to zero, thestage[IDLE] to one, but this format was used to
stay as close as possible to Steve Golson’s co@. irHis “1 << IDLE” got changed to have the
full vector size to work around a bug in one of Yexilog simulators.

Note that there is nowthird always block. It is a sequential always blocld areates the
registered outputs. This is necessary becauske dn@dros encoding, there is no way to use the
state bits for registered outputs. The block loatkthe value of “nextstate” and sets ds and rd
accordingly:

Fizzim 31 Fizzim

/I datapath sequential always block
always @(@osedge clk or negedge rst_n) begin
if (! rst.n) begin

ds <= 0;
rd <= 0;
end
else begin
case (1'bl)
nextstate [IDLE]: begin
ds <= 0;
rd <= 0;
end
nextstate [DLY]: begin
ds <= 0;
rd <= 1;
end
nextstate [DONE begin
ds <= 1;
rd <= 0;
end
nextstate [READ: begin
ds <= 0;
rd <= 1;
end
endcase
end
end

This structure is also used for registered dataffeelydp”) outputs (coming soon).

6.6 Ascii state name

Notice that both heros and onehot had some extralation code at the end. The code for
onehot looks like this:

/I This code allows you to see state names in simul ation
“ifndef SYNTHESIS
reg [31:0] statename ;
always @* begin
case (1'bl)
state [IDLE]:
statename
state [DLY]:
statename
state [DONE
statename = "DONE",
state [READ:
statename = "READ";
default
statename = "XXXX";
endcase
end
“endif

"IDLE" ;

"DLY" ;

Fizzim 32 Fizzim

This code allows the designer to see the asce stame in simulation (set the data type to ascii in
your waveform viewer), but does not affect synthedihe “ifndef SYNTHESIS/ endif’ replaces
the old “//synopsys translate on/off’ syntax forking this simulation-specific (thanks to Cliff
Cummings for pointing this out).

Equivalent code is generated for heros.

/I This code allows you to see state names in simul ation
“ifndef SYNTHESIS
reg [31:0] statename
always @* begin
case (state)

IDLE :
statename = "IDLE" ;
DLY:
statename = "DLY";
DONE
statename = "DONE";
READ
statename = "READ";
default :
statename = "XXXX";
endcase
end
“endif

Here’s an example of what this looks like:

Signals Waves
T 1 22100 ps 44200 ps 66
test. clk | | | | | | | | |
test.rst_n
test.go | 1 1
test ws I |
test.rd | |
test.ds |
I

"IDLE" ["READ" DLy ["READ" ["DL¥"

test.cliff classic.statename[31:0

This can be turned off by specifying the “-nosimebdption on fizzim.pl.

6.7 (Un)Displaying the attributes table

Notice that most of the examples so far have hadttributes table to the left of the state
machine. This is a handy feature, but you donveha use it. To turn it off, do “File >
Preferences” and uncheck the “Table Visible” box.

Fizzim 33 Fizzim

Alternatively, you can move the table to anotherit®own) page. See the section on multiple
pages in the tutorial.

Fizzim 34 Fizzim

7 Mealy outputs

Combinational outputs (Mealy outputs) are also sufgal. They are distinguished from
sequential outputs by setting the type field tomioo.

A Mealy output is defined as an output which isetegent on both the state and the inputs.
There are two ways to describe a Mealy outputne Way, which derives directly from the
definition, is to specify the combinational equattbat describes the outpiar each state. The
other way is to specify the combinational equathmat describes the outpom each transition.
Fizzim supports either style.

Let’'s add a Mealy output to Cliff's state machirsing the on-states method.
7.1 Mealy outputs assigned in states
Suppose we wanted to create an output that woglgldéadf “go” was asserted during state

“DLY”? This is just a comb output whose equatierigo” during the DLY state, and O at all
other times.

Back to CIiff Classic. Start by creating the nemiput “go_missed”. Go to the Global Attributes
> Qutputs tab and add “go_missed” . Set the tygedamb” and the default value to 0.

Edit Global Properties [‘S__<|
Here you can change the global attrilutes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

f State Machine r Inputs r Outputs |/ States |/Transitiuns
Aftribiute Mame Default Walue Wigibilit Type Comment Caolar

rd I} RS req
s I} RS remq
go_missed 0 es comb)

v

Delete User Output Muktibit Output
OK Cancel

Fizzim 35 Fizzim

Now edit the DLY state to change the equation @’ ‘g

Edit State Properties f$__(|
Edit the properties of the selected state:
Aftribiute Marme Yalle Wigibility Type Camment Caolar
narme DLy es def_type
rd 1 es output
s I} es output
go_missed ¢ g0 D) Yo autput
Width: |130 |
Height: |130 |
OK Cancel

The result looks like this:

STATE MACHIMNE
nams cliff_classic
clock clk posedge
reset_signal rst_n negedgs
reset_state IDLE anywvalue
default_state_is_x 1 IDLE
INPUTS rd<=0
clk ds <=0
rst_n go_missed =0
o
WS
QUTPUTS
rd o] reg
ds [¥] reg
go_missed o] comb
STATES DOME READ
rd [¥] output rd <=0 rd <= 1
ds o] oltput ds <= 1 ~
go_missed [¥] output R ds<=10
TRANSITIONS go_missed =0 go_missed = 0
eguation 1 def_type -

Notice the go_missed output shows up on each Istdgigle with an “=" instead of a “<=",
because it is of type “comb”.

Fizzim 36 Fizzim

Re-run the backend, and the new output is addégpasreg”:

module _cliff
Output wire ds ,
eufput reg go_missed
output wire rd ,
input wire clk

input wire go ,

input wire rst_n
input wire ws

);

(

That seems a bit counter-intuitive for a comb otjtput recall that “reg” in Verilog doesn’t
necessarily imply a physical register. It's typg because it will be assigned in the combinational
always block, which now looks like this:

Fizzim 37 Fizzim

ault to x because default_state is_x is set
Z |/ default to hold value to avoid latch inference

nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY: begin
go_missed =go ;
if (ws) begin
nextstate = READ
end
else begin
nextstate
end
end
DONE begin
go_missed
begin
nextstate
end
end
READ begin
go_missed
begin
nextstate = DLY;
end
end
endcase
end

DONE

l
e

IDLE;

l
e

Notice the new lines have been added to each stedise entry that assign values to go_missed.

Also, a new line has been added to default “go_adist hold its value at each pass through the
loop. Without this, design_compiler might add lfes because the “case” may not be full. This
line will not appear in the onehot output, sincattltase” is guaranteed to be full.

Note that output equations for comb outputs (ia taise, just “go”) are NOT parsed by fizzim.

They are just strings to fizzim.

7.2 Mealy outputs assigned on transitions

Although this behavior could also be described lyipg the equation “go” on the transition
from READ to DLY, and creating a loopback transitend putting the same equation on it, it is
probably most naturally described using the “omestamethod above.

Fizzim 38 Fizzim

But there is a case where assigning the Mealy ¢utpdransitions might make more sense than
assigning it on states — when the Mealy output gguanatches the transition equation.

Suppose we wanted to send out an early copy dfdh@utput on the transition from IDLE to
READ?

This is the same as saying that the new pre_rdubiggequal to “go” in state IDLE. So, one way
to implement this is by setting the pre_rd outmutgo” in the IDLE state, similar to the example
above.

But since the equation is the same as for theitiam$rom IDLE to READ, another way is to
make the pre_rd output equal to 1 ontifamsition from IDLE to READ.

Let’s take a closer look at this approach. Fin&']l go back to cliff_classic and add the (comb)
pre_rd output:

Edit Global Properties [‘S__<|
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

(State Machine r Inputs r Outputs |/ States |/Transitiuns
Aftribiute Mame Default Walue Wigibilit Type Comment Caolar
rd I} eS req
s I} eS req
fre_rd] Cnly non-default |cormtk
Delete User Output Muktibit Output
OK Cancel

Fizzim will automatically transfer your new combtput to the states attributes list (as in the
previous example), as it does for registered ostpiftyou want to specify a comb output
changing on a transition, you have to add it toTttensitions attribute list yourself:

Go to the Global Attributes > Transitions tab, aise the “Output” button to add “pre_rd”. Set
the default value to 0, and Visibility to “Only nalefault”.

Fizzim 39 Fizzim

Edit Global Properties le

Here you can change the global attributes of all obhjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

(State Machine r Inputs r Outputs |/ States |/Tran5itiuns

Attribute Mame | Default Yalue Wigibility Type Comment Caolar
narme def_name (I} def_tvpe

equation 1 Cnly non-def.. [def_tpe

fre_rd I} Cnly non-def... output

I/\\
/ N\
Delete User Graycode (Outpurt Priority
OK Cancel

Now double-click the IDLE to READ transition. lbw has “pre_rd” as an attribute (of type
output). Change the value to 1.

Since we set the visibility to only non-defaulte thalue will only show up on this transition, and
we get the following state diagram:

Fizzim 40 Fizzim

STATE MACHIMNE

name

clock

reset_signal

reset_state

default_state_is_x
INPUTS

clk

rst_n

]

WS
OUTPUTS

rd

ds

pre_rd
STATES

rad

ds

pre_rd
TRANSITIONS

eguation

pre_rd

The Verilog output looks like this:

Fizzim

cliff_classic
clk

rst_n

IDLE

1

posedge
negedgs
anywvalue

reg
reg
comb

oLtput
output
output

def_type
oLtput

41

Fizzim

/I comb always block
always @* begin
nextstate = 3bx ;
pre_rd = pre_rd
case S

E: begin
(go) begin

else begin
nextstate =
pre_rd = 0;
end

end
DLY: begin
if (ws) begin

nextstate =

pre_rd = 0;
end
else begin

nextstate =

pre_rd
end
end
DONE begin
begin

l
e

nextstate =

pre_rd
end
end
READ begin
begin

l
e

nextstate =

pre_rd = 0;
end
end
endcase
end

So, the output pre_rd does indeed change whemahsition path is taken.

7.3 Mixing the styles

extstate =

/I default to x because default_state is_x is set
/I default to hold value to avoid latch inference

READ

IDLE;

READ

DONE

IDLE;

DLY;

Also, note that yowan mix the two styles, but the rules about what hasipy over what are

somewhat complicated. See the tutorial and tlazérfilocumentation for details.

Fizzim

42

Fizzim

8 Datapath outputs

Recall that fizzim has two types of registered otgp- reg and regdp. The “dp” in regdp stands
for “datapath”. When the type is regdp, fizzimlwibt attempt to encode the bits in the state
vector.

As a simple example, we’ll go back to Cliff Clasaid change the type of output rd to regdp:

Edit Global Properties b_q

Here you can change the global attributes of all ohjects. Once an attribute is added, its default

value can be overridden by right clicking on an object and selecting to "Edit Properties.'

|/S’tate Machine |/Inputs |T'Dutputs rStates rTransitiuns |

Attribute Mame | Default Walue visibility /T Tyne Comment | Color
rd Ves _lregdp)
ds Yes I

Delete User Ourtpurt Multibit Outpurt

OK Cancel
Re-run fizzim.pl, and the output looks like this:

/I state bits
parameter
IDLE = 3'b000 , //extra=00 ds=0
DLY = 3'b010 , //extra=10 ds=0
DONE= 3'b001 , //extra=01 ds=1
READ = 3'0100 ; // extra=00 ds=0
reg [2:0] state ;
reg [2:0] nextstate ;
/I comb always block
always @* begin
nextstate = 3'bx ; [/ default to x because default_state_is_x is set

case (state)

IDLE: begin
if (go) begin
nextstate = READ

Fizzim 43 Fizzim

end
else begin
nextstate = IDLE;
end
end
DLY: begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

/I Assign reg'd outputs to state bits
assign ds =state [O0];

/I sequential always block
always @(posedge clk or negedge rst_n) begin
it (! rst_n)

state <= IDLE;

else

state <= nextstate ;
end

Fizzim 44 Fizzim

/[datapath sequential always block
always @(osedge clk or negedge rst_n) begin
if (! rst.n) begin
rd <= 0;
end
else begin
case (nextstate)
IDLE: begin
rd <= 0;
end
DLY: begin
rd <= 1,
end
DONE begin
rd <= 0;
end
READ begin
rd <= 1,
end
endcase
end
end

Notice that the signal rd is no longer includedhia state vector, and that a third always block has
been added. This third always block does a “casdiextstate, and assigns rd on the clock edge

— creating a registered rd output.

Well, that’s fine if all you want to do is pull Bibut of the state vector. But the real value of
regdp is true datapath outputs. Suppose we wantedinter to be controlled by the state
machine? You can't very well emb#tht in the state bits! Some tools require you to pusha
control signal (usually a Mealy output) and impleiee counter externally. Fizzim will let you

bury the counter right in with the state machine.

So, let’'s add a counter. First, we add a regdpudicalled count[8:0].

Fizzim 45

Fizzim

Edit Global Properties E'

Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’
(State Machine |/ Inputs |/ Outputs |/ States |/Transitinns

Aftribiute Mame | DefaultValue Wigibility Type Comment Caolar
rd I} es req
s I} es req
count[E:0] es reqdp

Delete User Outpurt Muhtibit Output

0K Cancel

The “Multibit Output” button creates an exampletwtbe correct syntax (bit field after the name).

Add an input of “load[8:0]” so we can load the ctam

Edit Global Properties D__(|
Here you can change the global attributes of all objects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

f State Machine |T Inputs r Outputs r States rTransitinns

Attribute Mame | DefaultValue Wisibility Type Comment Color
clk [
rst_n [
oo [
'S [
load[a:0] [

Delete User Input Multibit Input

OK Cancel
Fizzim 46

Fizzim

Now go around to the states and assign the colikeehis:

IDLE: 8'b0

READ: load[8:0]
DLY: count[8:0] - 1
DONE: count[8:0] + 1

The result looks like this:

STATE MACHIMNE
nams cliff_classic
clock clk posedge
reset_signal rst_n negedge
reset_state IDLE anyvalue IDLE
default_state_is_x 1 rd==0
'NEETS ds <=0
rstn count[8:0] == 8'h0
o
WS
load[5:0]
OUTPUTS
rd [¥] reg
ds o] reg
count[S:0] S'h00000000 regdp DOME READ
STATES red <=0 rel == 1
rd 0 output ds <=1 ds==0
ds 0 output ount[&:0] == court[3:0] + 1 e .
count]s:0] £h00000000 output count[.0] <= load[8:0)
TRANSITIONS
eqjuation 1 cef_type

DLY
rd==1
ds==0
ount[S:0] == count[3:0] -

Save it away and re-run fizzim.pl, and here’s wmat get:

/Il state bits
parameter
IDLE = 3'b000 , // extra=0rd=0 ds=0
DLY = 3'b010 , // extra=0rd=1 ds=0
DONE= 3'b001 , // extra=0 rd=0 ds=1
READ = 3'b110 ; // extra=1rd=1 ds=0

reg [2:0] state ;
reg [2:0] nextstate ;

/I comb always block
always @* begin
nextstate = 3'bx ; [/ default to x because default_state is x is set
case (state)
IDLE: begin
if (go) begin

Fizzim 47 Fizzim

nextstate = READ
end
else begin
nextstate = IDLE;
end
end
DLY : begin
if (ws) begin
nextstate = READ
end
else begin
nextstate = DONE
end
end
DONE begin
begin
nextstate = IDLE;
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

/I Assign reg'd outputs to state bits
assign ds =state [O0];
assign rd =state [1];

/I sequential always block
always @(posedge clk or negedge rst_ n) begin
it (! rst_n)

state <= IDLE;

else

state <= nextstate ;
end

/[datapath sequential always block

always @(posedge clk or negedge rst_n) begin
if (! rst_n) begin

count [8:0] <= 800 ;

end
else begin
case (nextstate)

IDLE: begin

count [8:0] <= 800 ;
end
DLY : begin

count [8:0] <=count [8:0] - 1;
end
DONE begin

count [8:0] <=count [8:0] + 1;
end
READ begin

Fizzim 48 Fizzim

count [8:0] <=load [8:0];
end
endcase
end
end

Note that, as with comb outputs, the values fodpegutputs areot parsed by fizzim. They're
just strings. Outputs of type reg must be parsetihat they can be included in the state
assignments. Currently, only constants are alasvgalues in reg outputs (no macros,
parameters, etc) because fizzim.pl must parse them.

Fizzim 49 Fizzim

9 Transition priority

9.1 Basic Example

Suppose we add an input to CIiff Classic callegttéhat will cause the FSM to pop over to
DONE, wait for test to go away, then pop back th.H?

STATE MACHIMNE

nams cliff_classic

clock clk posedge
reset_signal rst_n negedgs
reset_state IDLE anywvalue

default_state_is_x 1
INPUTS
clk

rst_n

o

WS

test
OUTPUTS

rd reg

ds reg
STATES

rd oLtput

ds output
TRANSITIONS

eqjuation 1 def_type

Since we expect test to be false during normalaifmer, we can just change the DONE->IDLE
equation to “Itest”.

If we run fizzim.pl, the following warnings appears

IDLE: begin
/I Warning P3: State IDLE has multiple exit transit ions, and
transition trans0 has no defined priority
/I Warning P3: State IDLE has multiple exit transit ions, and

transition trans6 has no defined priority

This is telling us that we haven't defined what BE&M should do when both test and go are true.
Assume that we give priority to test. We couldrd@the equation for the IDLE->READ
transition to be “ltest && go”. But this gets rigaledious when the transition equations get

complicated. If we were coding the FSM by handweeild just encode the priority into the
if/felse structure in Verilog by putting the “if @g” first, like this:

Fizzim 50 Fizzim

if (test) begin

nextstate = DONE
end
else if (go) begin
nextstate = READ
end
else begin
nextstate = |IDLE;
end

You can do this in fizzim by assigning a “prioritgttribute to the transitions. This will tell
fizzim.pl what order to use in the if/else blockMerilog.

First we create a “priority” attribute for transitis in Global Attributes > Transitions. There’s
even a handy button to do it for you!

Edit Global Properties E'
Here you can change the global attributes of all ohjects. Once an attribute is added, its default
value can be overridden by right clicking on an object and selecting to 'Edit Properties.’

r State Machine |/ Inputs |/ Outputs |/ States |TTransitiuns |
Attribute Hame | Default Yalue Wigibilit Type Comment Caolar
narme fef_name Mo def_tvpe
eguation /1 N\ Only non-def.. [def_tvpe
priority ~ _ [1000) Qnly nan-def...
N————
Delete User Graycode Outpourt Priority
OK Cancel

Note that | set the default priority to 1000 — antwer larger than | expect to ever use. That

means that any transition whose prioritpas defined explicitly will have low priority. Morero
this in a moment.

Now we can set priority 1 on the test transition ofudle, and priority 2 on the go transition
(double-click each transition and edit the valu@mdrity).

Fizzim 51 Fizzim

STATE MACHIMNE

nams cliff_classic

clock clk posedge
reset_signal rst_n negedgs
reset_state IDLE anywvalue

default_state_is_x 1
INPUTS
clk

rst_n

]

WS

test
OUTPUTS

rd [¥] reg

ds o] reg
STATES

rd o] oLtput

ds [¥] output
TRANSITIONS

eqjuation 1 def_type

priority 1

Now when we run fizzim.pl, and the IDLE transitiblock looks like this:

IDLE: begin
if (test) begin
nextstate = DONE
end
else if (go) begin
nextstate = READ
end
else begin
nextstate = |IDLE;
end
end

You might be wondering why fizzim.pl didn’t complaabout the loopback path on IDIbgfore
we added the transition priorities. For that nathdy doesn’t it complain about the exits from
DLY? One is “ws” and the other is “1” (becausestisithe default value for the transition
attribute “equation” that was set in the Globalristites — fizzim sets it this way by default), and
they both have the default priority of 1000.

The answer is that the equation value of “1” geecc&l handling by fizzim.pl.

Fizzim 52 Fizzim

9.2 The special case of equation equal to “1”
OK, let’s go back to the original Cliff Classic t#anachine. We’'ll turn equation visibility to YES

so that all the transition equations are visidieytwere previously set to “Only non-default” to
suppress all the “1” equations):

STATE MACHIMNE

nams cliff_classic
clock clk posedge
reset_signal rst_n negedgs

reset_state IDLE anywvalue
default_state_is_x 1

INPUTS
clk

rst_n

]

WS
OUTPUTS

rd [¥] reg

ds [¥] reg
STATES

rd o] output

ds o] oLtput
TRANSITIONS

eguation 1 def_type

Why don't | need a “lgo” equation on the IDLE loaak (and “lws” on the DLY to DONE
transition)?

The answer is that fizzim.pl has some special mdgarding transition priority and equations
equal to “1”. First, if two exit transitions hatlee same (or no) priority set, the one with the
always-true equation (“1”) is assumed to have lopr@rity, and no warning is issued. Similarly,
if there are only two exit conditions and the alg+aue one is the lower priority (either due the
rule above or because it has explicitly been set)yarning is issued.

So, fizzim.pl sees the transition equations frorhHECas “go” and “1”, and assumes that “1” is the
default (lower-priority) transition.

But there’s a little more to this than just savémgne typing. It allows fizzim.pl to output Verilog

code that matches what most designers would hattemhad they coded this by hand. You
wouldn’t write:

Fizzim 53 Fizzim

case (state)
IDLE: begin
if (go) begin
nextstate = READ
end
else if (! go) begin
nextstate = IDLE;
end

You'd write this:

case (state)
IDLE: begin

if (go) begin

nextstate = READ
end
else begin

nextstate = IDLE;
end

You'd look at the state diagram, recognize thatldlogpback was the default, and make it the

“else” condition.

But fizzim has no easy way of inferring what is thefault condition. So, you have to tell it —

either by leaving the equation as “1”, or usinglexpriorities.

That’'s what priority is for — to tell fizzim.pl whahe order of the “if’ statement ought to be.

If you don't like this feature, you don’t have teeuit. Let’s add the “missing” equations:

Fizzim

54

Fizzim

STATE MACHIMNE

nams cliff_classic

clock clk posedge
reset_signal rst_n negedgs
reset_state IDLE anywvalue

default_state_is_x 1
INPUTS
clk

rst_n

o

WS
OUTPUTS

rd [¥] reg

ds [¥] reg
STATES

rd o] output

ds o] oLtput
TRANSITIONS

eguation 1 def_type

The Verilog output now looks like this:

/I comb always block
always @* begin

nextstate = 3'bx ; [/ default to x because default_state is x is set

case (state)
IDLE: begin
/I Warning P3: State IDLE has multiple exit transit
transition trans0 has no defined priority
/I Warning P3: State IDLE has multiple exit transit
transition trans5 has no defined priority
if (go) begin
nextstate = READ
end
else if (! go) begin
nextstate = IDLE;
end
end
DLY: begin
/I Warning P3: State DLY has multiple exit transiti
trans2 has no defined priority
/I Warning P3: State DLY has multiple exit transiti
trans3 has no defined priority
if (ws) begin
nextstate = READ
end
else if (! ws) begin
nextstate = DONE
end
end
DONE begin

Fizzim 55

ions, and

ions, and

ons, and transition

ons, and transition

Fizzim

begin
nextstate
end
end
READ begin
begin
nextstate = DLY;
end
end
endcase
end

IDLE;

Except for the warnings, this is what you would extp

The warnings are telling you that you have two ddnansition equations and haven't defined
their priorities. You and | know that they are mutually exclusive, but fizpidoesn't parse the
equations, so it doesn’t know. So, it warns you.

But you can easily turn the warnings off. To toffithis specific warning, use the —nowarn
switch:

fizzim.pl —nowarn P3 < cliff.fzm > cliff.v

You can also turn off whole groups of warnings (fR&ans priority warnings) by just using the
letter:

fizzim.pl —nowarn P < cliff.fzm > cliff.v

So, if you prefer to always use explicit equaticar®] never use priorities, just use “-nowarn P”
when you invoke fizzim.pl.

For more on suppressing warnings, see the tutorial.

Fizzim 56 Fizzim

10 Brief overview of advanced features

Fizzim has a number of other features not desciieee. For a complete tutorial and
documentation, please visit my web pagew.zimmerdesignservices.com

Here is a short list of the more advanced features:

10.1Gray codes

Individual transitions can be marked for gray cgdiand fizzim.pl will choose an appropriate
state encoding (if one exists).

10.2 Stubs

Rather than have every transition arc betweenssthitewn the diagram, it is possible to have
transition arcs “stub out”, meaning they go to (andhe from) stub connectors labeled with the
destination (and source) state.

10.3Controlling internal signals

Fizzim’s internal signals (like state and nextstatn be renamed using command line switches on
fizzim.pl. They can also be brought out as parsing either the internal name or a different
name.

10.4Inserting code

You can use attributes to insert arbitrary piedesde at strategic places in the Verilog output
(such as before the module statement, after theilmathtement, etc).

In particular, this can be used to insert a lin€iteclude” a file.

Also, there is an attribute to insert code fromthaofile at the top of the Verilog output,
specifically for reading in the copyright statement

This is described in the tutorial.

10.5Comments

You can use the comment field in the attributegetedocomment both the diagram and the code.
Details of which comments carry over into the \Gagicode are described in the tutorial.

Fizzim 57 Fizzim

10.6Multiple pages

Fizzim has multiple pages. You can easily moveestand the attributes table between pages.
The transitions are handled via interpage connsctdhis is all transparent to fizzim.pl and thus
to the Verilog output.

10.7Forcing the state vector

Although not directly supported by fizzim (becatise state vector width is determined on the
fly), it is possible to force the state vector wsu The techniques are described in the tutorial.

10.8Controlling and suppressing warning messages

Warning messages can be suppressed individuallinagrdups. Output can be directed to the
Verilog output (as comments), to STDERR, or boflhis is described in the tutorial.

10.9Printing and exporting the state diagram

Fizzim gives you several options for printing angarting the state diagram. This is described in
the tutorial.

10.10Specifying the backend command and options

There is a special “state machine” attribute cdled cmd” that can be used to specify what the
backend code generation command should be. Soynéhtawill be used to allow users to run
the backend directly from the gui. For now, fizphwill parse the command for its own options
and configure itself accordingly. So, if you alwayant “-nowarn P3”, you can set be_cmd to:
fizzim.pl —nowarn P3

And you’ll never get P3 warnings.

Options given directly on the command line overdaflicting options from be_cmd.

Fizzim 58 Fizzim

11 Future directions / wish list

e Multi-page print

e Better support for pages sizes other than 8-1/P1by

e (Limited?) parsing of “include files for "definead/or parameters to allow their use as
values for reg outputs.

e Add a “-terse” (or “-cliff"?) option to output theinimum code necessary (suppress
unnecessary wire/reg statements, begin/end, etc)

Fizzim 59 Fizzim

12 Conclusion

Fizzim is a freely available, open source fsm desigpl. We hope that fizzim will provide ASIC
designers with a valuable new tool for designirgjrtbtate machines and that others will make
use of the open source nature of the tool to addfeatures and make these available to all.

Fizzim 60 Fizzim

13 Acknowledgements

The authors would like to acknowledge the followindividuals for their assistance:
Bruce Lavigne — Hewlett Packard

Mark Gooch — Hewlett Packard

Jon Watts — Hewlett Packard

Cliff Cummings — Sunburst Design

Fizzim 61 Fizzim

14 References

(1) Synthesizable Finite State Machine Design TechnigedJsing the New
SystemVerilog 3.0 Enhancements
Cliff Cummings
Synopsys Users Group 2003 San Jose
(available atvww.sunburst-design.cgm

(2) State machine design techniques for Verilog and VHD
Steve Golson
Synopsys Users Group 1994 San Jose
(available atvww.trilobyte.comn)

(3) Coding And Scripting Techniques For FSM Designs Wh Synthesis-Optimized,
Glitch-Free Outputs
Cliff Cummings
Synopsys Users Group 2000 Boston
(available atvww.sunburst-design.cogm

Fizzim 62 Fizzim

