

FizZim – an open-source FSM design environment

Paul Zimmer
Zimmer Design Services

Michael Zimmer
Zimmer Design Services

(and University of California, Santa Barbara)

Brian Zimmer
Zimmer Design Services

Zimmertech
(and University of California, Davis)

Zimmer Design Services
1375 Sun Tree Drive
Roseville, CA 95661

paulzimmer@zimmerdesignservices.com

website: www.zimmerdesignservices.com

Fizzim Fizzim 2

ABSTRACT

Finite State Machine design is a common task for ASIC designer engineers. Many designers
would prefer to design FSMs in a gui-based environment, but for various reasons no commercial
tool for this task has really achieved wide-spread acceptance. The authors have written such a
graphical FSM design tool, and offer it to the engineering community for free under the GNU
public license. The gui is written in Java for portability, while the back-end code generation is
written in Perl to allow for easy modification. The paper will describe the basic operation of the
tool and the format of the Verilog it produces, then go on to describe some of the more advanced
features and how they affect the Verilog output.

Fizzim Fizzim 3

Table of contents

1 Introduction - What is fizzim? ...4
2 Starting fizzim...5

2.1 Windows .. 5
2.2 Linux ... 5

3 GUI basics ..6
4 Attributes..7
5 Encodings ...8

5.1 Highly Encoded with Registered Outputs as Statebits (HEROS).. 8
5.2 One Hot.. 8

6 Cliff’s Classic ..9
6.1 Creating the states .. 10
6.2 Creating the transitions .. 12
6.3 Filling in the details ... 15

6.3.1 Global Attributes... 15
6.3.2 Individual State Attributes... 22
6.3.3 Individual Transition Attributes .. 24

6.4 Output using heros ... 25
6.5 Output using onehot ... 29
6.6 Ascii state name ... 32
6.7 (Un)Displaying the attributes table ... 33

7 Mealy outputs ...35
7.1 Mealy outputs assigned in states ... 35
7.2 Mealy outputs assigned on transitions... 38
7.3 Mixing the styles .. 42

8 Datapath outputs...43
9 Transition priority ...50

9.1 Basic Example.. 50
9.2 The special case of equation equal to “1” .. 53

10 Brief overview of advanced features...57
10.1 Gray codes.. 57
10.2 Stubs .. 57
10.3 Controlling internal signals ... 57
10.4 Inserting code... 57
10.5 Comments .. 57
10.6 Multiple pages.. 58
10.7 Forcing the state vector... 58
10.8 Controlling and suppressing warning messages .. 58
10.9 Printing and exporting the state diagram .. 58

11 Future directions / wish list ..59
12 Conclusion...60
13 Acknowledgements..61
14 References ...62

Fizzim Fizzim 4

1 Introduction - What is fizzim?

Finite State Machines come up frequently in digital design. Sometimes designers code them
directly in Verilog, but many designers prefer to design their FSMs as a state diagram (“bubbles
and arrows”). This diagram must then be manually translated into Verilog.

For these designers, it would certainly be handy to design the FSM directly in a graphical tool and
allow the software to generate the Verilog code. There have been several attempts by various
EDA companies, large and small, to provide such a tool, but nothing has really gotten much
traction.

This may be because the tool is in a strange niche. It is really too small to support business on an
EDA scale, but it is too large for a “G-job”. Also, the graphical part of the G-job is outside the
usual experience of hardware designers.

So, it seems a good candidate for an open source project, provided someone is willing to tackle
that nasty graphical part.

Someone has! Paul Zimmer and his young interns at Zimmer Design Services, Mike Zimmer and
Brian Zimmer, are proud to present fizzim – an open-source, graphical FSM design environment.

Throughout this paper, it is assumed that the reader is familiar with FSMs and common FSM-
related terms (such as Moore and Mealy). If the reader is unfamiliar with some of this material,
just read through some of the papers in the “references” section.

Fizzim Fizzim 5

2 Starting fizzim

The fizzim gui is written in java. It is distributed as a “.jar” (java archive) file. We run it using
Sun Java Runtime Environment. Odds are that you already have this loaded for your browser, but
if not you can download it from java.sun.com.

2.1 Windows

On most Windows machine, Java Runtime Environment will already be registered as the correct
app for “.jar” files, so just double-clicking on the file should start it. If that doesn’t work, you can
start a terminal window and use the command-line approach as in Linux below.

2.2 Linux

On linux, try right-clicking the file and select “open using”. If java runtime is listed, you’re in
business. You can also run from the command line using:

java –jar fizzim.jar

Fizzim Fizzim 6

3 GUI basics

The gui is pretty intuitive. Right-click in open space gives you a menu to create new states and
transitions. Right-click on an object gives you a menu to edit the object. Double (left) click on an
object will bring up the properties menu for that object.

Left-click and drag to move an object. You can group objects for moves by either selecting them
with a “box” or using click, ctrl-click.

Edit>undo or ctl-Z will undo, Edit>redo or ctl-Y will redo. Undo/redo is unlimited.

Fizzim Fizzim 7

4 Attributes

It is our belief that few hardware engineers will want to touch the gui, but many will want to
modify the Verilog output. In recognition of this, every attempt has been made to try to keep the
gui as independent of the Verilog generation as possible.

To accomplish this, virtually everything is implemented as “attributes”. This should allow new
backend (Verilog-generation) features to be added without touching the gui. Also, while the gui
is written in Java, the backend is in the linga-franca of EDA – perl.

There are only 3 types of objects to the gui – the state machine itself, states, and transitions. Each
of these can have attributes assigned to it. But state and transition object attributes have to be
defined first in the global “states” and “transitions” attribute menus before they will be available in
individual states and transitions. The gui knows about a few special attributes, but only those that
require that the display be modified. Examples include transition equations (drop the “equation
=” on the visible text) and output types (use “=” for combinational and “<=” for registered).

Inputs and outputs are just attributes. The name field is the name of the input or output signal.

Each attribute has 5 fields:

• Attribute Name – this is the name of the input or output, or the name of the special
attribute.

• Default Value – Default value of the attribute. Will be used if no value is assigned in a
state/transition.

• Visibility – Turns on/off visibility on the display. “Only non-default” means to only show
the attribute if its value doesn’t match “Default Value”.

• Type – Information about the attribute. Inputs currently have no defined type, outputs
can be “reg”, “regdp”, or “comb”. Others are attribute-specific.

• Comment – An optional comment that will show up on the diagram, in the Verilog, both,
or neither, depending on the attribute.

• Color – Text color.

Fizzim Fizzim 8

5 Encodings

There are two primary types of state encodings used for FSM design. Highly encoded FSMs use
a dense binary code and few flops but can sometimes have very complex combinational logic.
One-hot FSM encodings, on the other hand, use a sparse code and many flops, but usually have
much simpler combinational logic. There are many papers on the advantages and disadvantages
of each (reference [2] is one example).

The backend perl script (fizzim.pl) supports both of these encodings.

5.1 Highly Encoded with Registered Outputs as Statebits (HEROS)

Heros is an encoding that uses a dense binary code. As the name implies, registered outputs will
be encoded into the states to minimize flop count. There are mechanisms (discussed below) to
allow particular outputs to be excluded from the state vector. The actual Verilog format is based
on recommendations from Cliff Cummings’ paper (reference [3]).

5.2 One Hot

One-hot encoding is also supported. The Verilog format is based on Steve Golson’s paper
(reference [2]). Some features, such as gray coded transitions, are not available with one-hot
encoding.

Fizzim Fizzim 9

6 Cliff’s Classic

Let’s jump right in with an example. In [3], Cliff Cummings introduced the following basic state
machine:

Here’s how we would create this in fizzim.

Fizzim Fizzim 10

6.1 Creating the states

Right-clicking in open space gives the following menu:

We select “New State” and get this:

Fizzim Fizzim 11

Change the state name to “IDLE” and hit “OK”.

Repeat this to add the other three states. Left-click and drag to move the states around.

Fizzim Fizzim 12

6.2 Creating the transitions

To create the state transitions, we can either right-click in open space and select “New State
Transition” and get the full menu:

Fizzim Fizzim 13

Or we can right-click on the start state and select “Add State Transition to”:

We repeat this to add all the transitions. Don’t forget to add the loopback transition. We’ll see
why this matters in a moment.

Fizzim Fizzim 14

Notice that when we add the transition from DLY back to READ, we get something like this:

That doesn’t look so great, so we need to move one of the transitions. To do this, left-click to
select it. Endpoints and anchorpoints appear:

Fizzim Fizzim 15

Drag the endpoints to a new location, then drag the anchorpoints to reshape the curve. The
anchorpoints on the ends of the arc control where the arc intersects the state bubble. The other
two control the shape of the curve.

If you move a state bubble, the attached arcs will move with it. As long as the move isn’t too
drastic, the anchorpoint modifications you made will be retained. If you move the state a lot, the
anchorpoints may get reset. This works better than it sounds. Mostly your anchorpoints are
retained when it makes sense.

All text, including the transition equation (the “1” above), output values in states, state names,
and free text, can be moved by just selecting it and moving it.

Don’t forget to add the loopback transition. We’ll see why this matters in a moment.

6.3 Filling in the details

6.3.1 Global Attributes

Recall that everything is stored as attributes – either attributes on the FSM itself or attributes on
individual states and transitions. So, adding inputs, outputs, transition equations, etc is a matter
of editing attributes.

Let’s start with the global FSM attributes. It is necessary to start here, because the individual
state and transition attributes won’t appear until they are entered as global attributes.

Fizzim Fizzim 16

Select “Global Attributes > State Machine” from the top menu:

Fizzim Fizzim 17

And you get this:

Edit the fields to fill in the module name “cliff”, the clock name “clk”, and make it a posedge clk.

Click the “Reset” button, and two more attributes appear. One is “reset_signal”. Change this to
“rst_n”, negedge. Set “reset_state” to IDLE via the pull-down menu and set its type to
“anyvalue” (“allzeros” and “allones” will force the reset state to be all zeros or all ones, but this
isn’t compatible with onehot encoding, so we won’t use it on this example).

Fizzim Fizzim 18

Hit OK. Notice that IDLE now has a double ring to indicate it is the reset state.

Now select “Global Attributes > Inputs” from the top menu.

Fizzim Fizzim 19

Use the “Input” button to add the inputs:

Note that “type” doesn’t matter for inputs. We could click OK, then reselect “Global Attributes
> Outputs” from the top menu, or we can just switch to the “Outputs” tab without exiting the
menu.

Click “Output” twice to add the two outputs, “rd” and “ds”. Their type field should be “reg”.
Set “Default Value” to 0, and visibility “Yes”.

Fizzim Fizzim 20

This will become clearer later, but type “reg” means that they are registered outputs (Moore) and
that they should be encoded as state bits.

Now flip over to the “States” tab. “rd” and “ds” now appear as state attributes. This means you
will be able to assign particular values to them in particular states.

Fizzim Fizzim 21

Flip over to the “Transitions” tab. “rd” and “ds” do NOT appear here, because it makes no sense
to define registered outputs on a transition. The standard attribute “equation” DOES appear here,
with the default value of “1”. Leave it alone. But you can change the “Visibility” field to “Only
non-default” to make the “1” equations not show up on the diagram.

Fizzim Fizzim 22

6.3.2 Individual State Attributes

Now we can enter the output values into the states. Notice that the outputs now appear on the
states with a “<=” after them. This indicates registered outputs (“=” means combinational).

Fizzim Fizzim 23

Now we need to enter the non-default values for rd and ds. Right-click on the READ state and
select “Edit State Properties” to bring up the menu. Or just double-click the READ state bubble.
Change the value of rd to “1”.

Fizzim Fizzim 24

Do this for the other states to add appropriate output values (rd = 1 in DLY, ds = 1 in DONE).

6.3.3 Individual Transition Attributes

Double-click on the IDLE to READ transition to bring up the transition menu. Change the
equation to “go”.

Hit “OK”. Now click on the “go” text and move it:

Repeat this for the state transition from DLY back to READ that has an equation of “ws”.

Our final state diagram looks like this.

Fizzim Fizzim 25

You might have noticed that I did not put an explicit “!go” on the IDLE loopback transition, nor
an explicit “!ws” on the DLY to DONE transition. That is because fizzim understands that a
transition with an equation of “1” is the default, lowest priority, transition. This will be explained
in the section on transition priorities. You can add the explicit equations, but you don’t have to.

6.4 Output using heros

Now we can run the backend and generate code:

fizzim.pl < cliff.fzm > cliff.v

The default encoding is heros. Take a look at the output.

It is structured as two “always” blocks per [2]. The first one is combinational and does the next
state determination, and the second is sequential and just infers the flops. See [2] for an
explanation of why this is the preferred implementation.

Let’s look at the output code in detail.

Fizzim Fizzim 26

First, the module statement:

module cliff (
 output wire ds ,
 output wire rd ,
 input wire clk ,
 input wire go ,
 input wire rst_n ,
 input wire ws);

Nothing special there, except that it uses the Verilog 2001 format.

Now look at the state encoding:

 // state bits
 parameter
 IDLE = 3'b000 , // extra=0 rd=0 ds=0
 DLY = 3'b010 , // extra=0 rd=1 ds=0
 DONE = 3'b001 , // extra=0 rd=0 ds=1
 READ = 3'b110 ; // extra=1 rd=1 ds=0

 reg [2: 0] state ;
 reg [2: 0] nextstate ;

Recall that the heros format uses registered outputs as state bits. Fizzim.pl has assigned state bit
0 to “ds”, and state bit 1 to ‘rd”. There are only four states, but DLY and READ both have
state[1:0] equal to 01, because they have identical values of “ds” and “rd”. fizzim.pl recognizes
this, and adds an “extra” bit to distinguish these states. Thus, we end up with 3 state bits to cover
4 states, but since the registered outputs are encoded in the states, we still have fewer flops
overall. It is possible to force fizzim.pl to pull the output bits out of the state vector by changing
their type to “regdp”. See the section on datapath outputs below.

Also note that the IDLE state ended up as all zeros. In the absence of a requirement that would
prevent this, fizzim.pl heros encoding will favor the reset state as all zeros.

Fizzim Fizzim 27

Next comes the combinational always block:

 // comb always block
 always @* begin
 // Warning: Neither implied_loopback nor default_st ate_is_x attribute is
set on state machine - this could result in latches being inferred
 case (state)
 IDLE : begin
 if (go) begin
 nextstate = READ;
 end
 else begin
 nextstate = IDLE ;
 end
 end
 DLY: begin
 if (ws) begin
 nextstate = READ;
 end
 else begin
 nextstate = DONE;
 end
 end
 DONE: begin
 begin
 nextstate = IDLE ;
 end
 end
 READ: begin
 begin
 nextstate = DLY;
 end
 end
 endcase
 end

Pretty straightforward, and just what you would probably write if you were coding this by hand.
There’s a big case statement on “state”, and the inputs (go and ws) determine “nextstate”. But
notice the warning message.

// Warning: Neither implied_loopback nor default_st ate_is_x attribute is set
on state machine - this could result in latches bei ng inferred

We have come to a philosophical fork in the road.

Some people, including Cliff Cummings, like to make the default value of the nextstate vector
equal to “X” before executing the “case” statement. This ensures that bad things will happen in
simulation if the case statement is wrong, but it also means that all loopback conditions need to be
entered explicitly.

Other people prefer to make nextstate equal to current state before executing the case statement.
This means that the default action is loopback, so no explicit loopbacks are required.

Fizzim Fizzim 28

Fizzim.pl is philosophically neutral on this (and most other such issues), so you can choose which
way you want it. This is done by setting an attribute on the FSM – either “default_state_is_x” or
“implied_loopback”.

Since this is Cliff’s state machine, we’ll do it Cliff’s way. Select “Global Attributes > State
Machine” and click the “User” button. Enter the attribute name “default_state_is_x” and give it a
value of “1”:

Save the file and re-run fizzim.pl. The warning message goes away and the combinational block
starts like this:

 // comb always block
 always @* begin
 nextstate = 3'bx ; // default to x because default_state_is_x is set
 case (state)
 IDLE : begin

By the way, if we had used “implied_loopback” (create attribute “implied_loopback” and set it to
1), the output would have looked like this:

 // comb always block
 always @* begin
 nextstate = state ; // default to hold value because implied_loopback i s
set
 case (state)
 IDLE : begin

Fizzim Fizzim 29

Continuing with our tour of the heros output, we next have the code that assigns the outputs to
state bits:

 // Assign reg'd outputs to state bits
 assign ds = state [0];
 assign rd = state [1];

Then the sequential always block. Recall that we set the “reset_signal” attribute to “rst_n” and
it’s type as “negedge”. The “reset_state” was set to “IDLE”:

 // sequential always block
 always @(posedge clk or negedge rst_n) begin
 if (! rst_n)
 state <= IDLE ;
 else
 state <= nextstate ;
 end

If we had instead chosen the type as “negative”, we would have gotten an active-low synchronous
reset:

 // sequential always block
 always @(posedge clk) begin
 if (! rst_n)
 state <= IDLE ;
 else
 state <= nextstate ;
 end

The final bit of code is for simulation purposes and will be explained in “Ascii state name” below.

6.5 Output using onehot

The onehot encoding is based on Steve Golson’s paper [2]. This technique doesn’t really allow
for the “default_state_is_x” behavior, so this attribute is ignored.

fizzim.pl –enc onehot < cliff.fzm > cliff.v

Fizzim Fizzim 30

Skipping over the module statement, here’s what our “state encoding” looks like:

 // state bits
 parameter
 IDLE = 0,
 DLY = 2,
 DONE = 1,
 READ = 3;

 reg [3: 0] state ;
 reg [3: 0] nextstate ;

Recall that onehot encoding uses one bit for each state. So, 4 states means 4 bits. The parameter
refers to the bit position in the vector. So, when the FSM is in state DONE, for example, only bit
1 will be set (the state vector will be 0010).

The combinational always block looks equally bizarre:

 // comb always block
 always @* begin
 nextstate = 4'b0000 ;
 case (1’b1) // synopsys parallel_case full_case
 state [IDLE]: begin
 if (go) begin
 nextstate [READ] = 1'b1 ;
 end
 else begin
 nextstate [IDLE] = 1'b1 ;
 end
 end
 state [DLY]: begin
 if (ws) begin
 nextstate [READ] = 1'b1 ;
 end
 else begin
 nextstate [DONE] = 1'b1 ;
 end
 end
 state [DONE]: begin
 begin
 nextstate [IDLE] = 1'b1 ;
 end
 end
 state [READ]: begin
 begin
 nextstate [DLY] = 1'b1 ;
 end
 end
 endcase
 end

Fizzim Fizzim 31

The “case (1’b1)… state[IDLE]” gets translated to mean “when the IDLE bit of the state vector
(bit 0) is a 1”. The nextstate is calculated by first setting it to all zeros, then turning on the bit
that represents the next state.

Note that, because of the way it is coded (set to all zeros, then set the bit), the issue of defaulting
the value doesn’t arise for onehot. If something goes wrong, you get an illegal all-zeros state
which you never get out of.

The sequential always block looks like this:

 // sequential always block
 always @(posedge clk or negedge rst_n) begin
 if (! rst_n)
 state <= 4'b0001 << IDLE ;
 else
 state <= nextstate ;
 end

It seems simpler to just set state to zero, then set state[IDLE] to one, but this format was used to
stay as close as possible to Steve Golson’s code in [3]. His “1 << IDLE” got changed to have the
full vector size to work around a bug in one of the Verilog simulators.

Note that there is now a third always block. It is a sequential always block, and creates the
registered outputs. This is necessary because, unlike heros encoding, there is no way to use the
state bits for registered outputs. The block looks at the value of “nextstate” and sets ds and rd
accordingly:

Fizzim Fizzim 32

 // datapath sequential always block
 always @(posedge clk or negedge rst_n) begin
 if (! rst_n) begin
 ds <= 0;
 rd <= 0;
 end
 else begin
 case (1’b1)
 nextstate [IDLE]: begin
 ds <= 0;
 rd <= 0;
 end
 nextstate [DLY]: begin
 ds <= 0;
 rd <= 1;
 end
 nextstate [DONE]: begin
 ds <= 1;
 rd <= 0;
 end
 nextstate [READ]: begin
 ds <= 0;
 rd <= 1;
 end
 endcase
 end
 end

This structure is also used for registered datapath (“regdp”) outputs (coming soon).

6.6 Ascii state name

Notice that both heros and onehot had some extra simulation code at the end. The code for
onehot looks like this:

 // This code allows you to see state names in simul ation
 `ifndef SYNTHESIS
 reg [31: 0] statename ;
 always @* begin
 case (1’b1)
 state [IDLE]:
 statename = "IDLE" ;
 state [DLY]:
 statename = "DLY" ;
 state [DONE]:
 statename = "DONE";
 state [READ]:
 statename = "READ";
 default :
 statename = "XXXX" ;
 endcase
 end
 `endif

Fizzim Fizzim 33

This code allows the designer to see the ascii state name in simulation (set the data type to ascii in
your waveform viewer), but does not affect synthesis. The “`ifndef SYNTHESIS/`endif” replaces
the old “//synopsys translate on/off” syntax for making this simulation-specific (thanks to Cliff
Cummings for pointing this out).

Equivalent code is generated for heros.

 // This code allows you to see state names in simul ation
 `ifndef SYNTHESIS
 reg [31: 0] statename ;
 always @* begin
 case (state)
 IDLE :
 statename = "IDLE" ;
 DLY:
 statename = "DLY" ;
 DONE:
 statename = "DONE";
 READ:
 statename = "READ";
 default :
 statename = "XXXX" ;
 endcase
 end
 `endif

Here’s an example of what this looks like:

This can be turned off by specifying the “-nosimcode” option on fizzim.pl.

6.7 (Un)Displaying the attributes table

Notice that most of the examples so far have had the attributes table to the left of the state
machine. This is a handy feature, but you don’t have to use it. To turn it off, do “File >
Preferences” and uncheck the “Table Visible” box.

Fizzim Fizzim 34

Alternatively, you can move the table to another (or its own) page. See the section on multiple
pages in the tutorial.

Fizzim Fizzim 35

7 Mealy outputs

Combinational outputs (Mealy outputs) are also supported. They are distinguished from
sequential outputs by setting the type field to “comb”.

A Mealy output is defined as an output which is dependent on both the state and the inputs.
There are two ways to describe a Mealy output. One way, which derives directly from the
definition, is to specify the combinational equation that describes the output for each state. The
other way is to specify the combinational equation that describes the output on each transition.
Fizzim supports either style.

Let’s add a Mealy output to Cliff’s state machine using the on-states method.

7.1 Mealy outputs assigned in states

Suppose we wanted to create an output that would toggle if “go” was asserted during state
“DLY”? This is just a comb output whose equation is “go” during the DLY state, and 0 at all
other times.

Back to Cliff Classic. Start by creating the new output “go_missed”. Go to the Global Attributes
> Outputs tab and add “go_missed” . Set the type to “comb” and the default value to 0.

Fizzim Fizzim 36

Now edit the DLY state to change the equation to “go”.

The result looks like this:

Notice the go_missed output shows up on each state bubble with an “=” instead of a “<=”,
because it is of type “comb”.

Fizzim Fizzim 37

Re-run the backend, and the new output is added as type “reg”:

module cliff_classic (
 output wire ds ,
 output reg go_missed ,
 output wire rd ,
 input wire clk ,
 input wire go ,
 input wire rst_n ,
 input wire ws
);

That seems a bit counter-intuitive for a comb output, but recall that “reg” in Verilog doesn’t
necessarily imply a physical register. It’s type reg because it will be assigned in the combinational
always block, which now looks like this:

Fizzim Fizzim 38

 // comb always block
 always @* begin
 nextstate = 3'bx ; // default to x because default_state_is_x is set
 go_missed = go_missed ; // default to hold value to avoid latch inference
 case (state)
 IDLE : begin
 go_missed = 0;
 if (go) begin
 nextstate = READ;
 end
 else begin
 nextstate = IDLE ;
 end
 end
 DLY: begin
 go_missed = go ;
 if (ws) begin
 nextstate = READ;
 end
 else begin
 nextstate = DONE;
 end
 end
 DONE: begin
 go_missed = 0;
 begin
 nextstate = IDLE ;
 end
 end
 READ: begin
 go_missed = 0;
 begin
 nextstate = DLY;
 end
 end
 endcase
 end

Notice the new lines have been added to each state’s case entry that assign values to go_missed.

Also, a new line has been added to default “go_missed” to hold its value at each pass through the
loop. Without this, design_compiler might add latches because the “case” may not be full. This
line will not appear in the onehot output, since that “case” is guaranteed to be full.

Note that output equations for comb outputs (in this case, just “go”) are NOT parsed by fizzim.
They are just strings to fizzim.

7.2 Mealy outputs assigned on transitions

Although this behavior could also be described by putting the equation “go” on the transition
from READ to DLY, and creating a loopback transition and putting the same equation on it, it is
probably most naturally described using the “on states” method above.

Fizzim Fizzim 39

But there is a case where assigning the Mealy output on transitions might make more sense than
assigning it on states – when the Mealy output equation matches the transition equation.

Suppose we wanted to send out an early copy of the “rd” output on the transition from IDLE to
READ?

This is the same as saying that the new pre_rd output is equal to “go” in state IDLE. So, one way
to implement this is by setting the pre_rd output to “go” in the IDLE state, similar to the example
above.

But since the equation is the same as for the transition from IDLE to READ, another way is to
make the pre_rd output equal to 1 on the transition from IDLE to READ.

Let’s take a closer look at this approach. First, we’ll go back to cliff_classic and add the (comb)
pre_rd output:

Fizzim will automatically transfer your new comb output to the states attributes list (as in the
previous example), as it does for registered outputs. If you want to specify a comb output
changing on a transition, you have to add it to the Transitions attribute list yourself:

Go to the Global Attributes > Transitions tab, and use the “Output” button to add “pre_rd”. Set
the default value to 0, and Visibility to “Only non-default”.

Fizzim Fizzim 40

Now double-click the IDLE to READ transition. It now has “pre_rd” as an attribute (of type
output). Change the value to 1.

Since we set the visibility to only non-default, the value will only show up on this transition, and
we get the following state diagram:

Fizzim Fizzim 41

The Verilog output looks like this:

Fizzim Fizzim 42

 // comb always block
 always @* begin
 nextstate = 3'bx ; // default to x because default_state_is_x is set
 pre_rd = pre_rd ; // default to hold value to avoid latch inference
 case (state)
 IDLE : begin
 if (go) begin
 nextstate = READ;
 pre_rd = 1;
 end
 else begin
 nextstate = IDLE ;
 pre_rd = 0;
 end
 end
 DLY: begin
 if (ws) begin
 nextstate = READ;
 pre_rd = 0;
 end
 else begin
 nextstate = DONE;
 pre_rd = 0;
 end
 end
 DONE: begin
 begin
 nextstate = IDLE ;
 pre_rd = 0;
 end
 end
 READ: begin
 begin
 nextstate = DLY;
 pre_rd = 0;
 end
 end
 endcase
 end

So, the output pre_rd does indeed change when the transition path is taken.

7.3 Mixing the styles

Also, note that you can mix the two styles, but the rules about what has priority over what are
somewhat complicated. See the tutorial and the fizzim documentation for details.

Fizzim Fizzim 43

8 Datapath outputs

Recall that fizzim has two types of registered outputs – reg and regdp. The “dp” in regdp stands
for “datapath”. When the type is regdp, fizzim will not attempt to encode the bits in the state
vector.

As a simple example, we’ll go back to Cliff Classic and change the type of output rd to regdp:

Re-run fizzim.pl, and the output looks like this:

 // state bits
 parameter
 IDLE = 3'b000 , // extra=00 ds=0
 DLY = 3'b010 , // extra=10 ds=0
 DONE = 3'b001 , // extra=01 ds=1
 READ = 3'b100 ; // extra=00 ds=0

 reg [2: 0] state ;
 reg [2: 0] nextstate ;

 // comb always block
 always @* begin
 nextstate = 3'bx ; // default to x because default_state_is_x is set
 case (state)
 IDLE : begin
 if (go) begin
 nextstate = READ;

Fizzim Fizzim 44

 end
 else begin
 nextstate = IDLE ;
 end
 end
 DLY: begin
 if (ws) begin
 nextstate = READ;
 end
 else begin
 nextstate = DONE;
 end
 end
 DONE: begin
 begin
 nextstate = IDLE ;
 end
 end
 READ: begin
 begin
 nextstate = DLY;
 end
 end
 endcase
 end

 // Assign reg'd outputs to state bits
 assign ds = state [0];

 // sequential always block
 always @(posedge clk or negedge rst_n) begin
 if (! rst_n)
 state <= IDLE ;
 else
 state <= nextstate ;
 end

Fizzim Fizzim 45

 // datapath sequential always block
 always @(posedge clk or negedge rst_n) begin
 if (! rst_n) begin
 rd <= 0;
 end
 else begin
 case (nextstate)
 IDLE : begin
 rd <= 0;
 end
 DLY: begin
 rd <= 1;
 end
 DONE: begin
 rd <= 0;
 end
 READ: begin
 rd <= 1;
 end
 endcase
 end
 end

Notice that the signal rd is no longer included in the state vector, and that a third always block has
been added. This third always block does a “case” on nextstate, and assigns rd on the clock edge
– creating a registered rd output.

Well, that’s fine if all you want to do is pull bits out of the state vector. But the real value of
regdp is true datapath outputs. Suppose we wanted a counter to be controlled by the state
machine? You can’t very well embed that in the state bits! Some tools require you to push out a
control signal (usually a Mealy output) and implement the counter externally. Fizzim will let you
bury the counter right in with the state machine.

So, let’s add a counter. First, we add a regdp output called count[8:0].

Fizzim Fizzim 46

The “Multibit Output” button creates an example with the correct syntax (bit field after the name).

Add an input of “load[8:0]” so we can load the counter.

Fizzim Fizzim 47

Now go around to the states and assign the counter like this:

IDLE: 8’b0
READ: load[8:0]
DLY: count[8:0] - 1
DONE: count[8:0] + 1

The result looks like this:

Save it away and re-run fizzim.pl, and here’s what you get:

 // state bits
 parameter
 IDLE = 3'b000 , // extra=0 rd=0 ds=0
 DLY = 3'b010 , // extra=0 rd=1 ds=0
 DONE = 3'b001 , // extra=0 rd=0 ds=1
 READ = 3'b110 ; // extra=1 rd=1 ds=0

 reg [2: 0] state ;
 reg [2: 0] nextstate ;

 // comb always block
 always @* begin
 nextstate = 3'bx ; // default to x because default_state_is_x is set
 case (state)
 IDLE : begin
 if (go) begin

Fizzim Fizzim 48

 nextstate = READ;
 end
 else begin
 nextstate = IDLE ;
 end
 end
 DLY : begin
 if (ws) begin
 nextstate = READ;
 end
 else begin
 nextstate = DONE;
 end
 end
 DONE: begin
 begin
 nextstate = IDLE ;
 end
 end
 READ: begin
 begin
 nextstate = DLY;
 end
 end
 endcase
 end

 // Assign reg'd outputs to state bits
 assign ds = state [0];
 assign rd = state [1];

 // sequential always block
 always @(posedge clk or negedge rst_n) begin
 if (! rst_n)
 state <= IDLE ;
 else
 state <= nextstate ;
 end

 // datapath sequential always block
 always @(posedge clk or negedge rst_n) begin
 if (! rst_n) begin
 count [8: 0] <= 8'b0 ;
 end
 else begin
 case (nextstate)
 IDLE : begin
 count [8: 0] <= 8'b0 ;
 end
 DLY : begin
 count [8: 0] <= count [8: 0] - 1;
 end
 DONE: begin
 count [8: 0] <= count [8: 0] + 1;
 end
 READ: begin

Fizzim Fizzim 49

 count [8: 0] <= load [8: 0];
 end
 endcase
 end
 end

Note that, as with comb outputs, the values for regdp outputs are not parsed by fizzim. They’re
just strings. Outputs of type reg must be parsed so that they can be included in the state
assignments. Currently, only constants are allows as values in reg outputs (no macros,
parameters, etc) because fizzim.pl must parse them.

Fizzim Fizzim 50

9 Transition priority

9.1 Basic Example

Suppose we add an input to Cliff Classic called “test” that will cause the FSM to pop over to
DONE, wait for test to go away, then pop back to IDLE?

Since we expect test to be false during normal operation, we can just change the DONE->IDLE
equation to “!test”.

If we run fizzim.pl, the following warnings appears:

 IDLE : begin
 // Warning P3: State IDLE has multiple exit transit ions, and
transition trans0 has no defined priority
 // Warning P3: State IDLE has multiple exit transit ions, and
transition trans6 has no defined priority

This is telling us that we haven’t defined what the FSM should do when both test and go are true.

Assume that we give priority to test. We could change the equation for the IDLE->READ
transition to be “!test && go”. But this gets really tedious when the transition equations get
complicated. If we were coding the FSM by hand, we would just encode the priority into the
if/else structure in Verilog by putting the “if (test)” first, like this:

Fizzim Fizzim 51

 if (test) begin
 nextstate = DONE;
 end
 else if (go) begin
 nextstate = READ;
 end
 else begin
 nextstate = IDLE ;
 end

You can do this in fizzim by assigning a “priority” attribute to the transitions. This will tell
fizzim.pl what order to use in the if/else block in Verilog.

First we create a “priority” attribute for transitions in Global Attributes > Transitions. There’s
even a handy button to do it for you!

Note that I set the default priority to 1000 – a number larger than I expect to ever use. That
means that any transition whose priority is not defined explicitly will have low priority. More on
this in a moment.

Now we can set priority 1 on the test transition out of idle, and priority 2 on the go transition
(double-click each transition and edit the value of priority).

Fizzim Fizzim 52

Now when we run fizzim.pl, and the IDLE transition block looks like this:

 IDLE : begin
 if (test) begin
 nextstate = DONE;
 end
 else if (go) begin
 nextstate = READ;
 end
 else begin
 nextstate = IDLE ;
 end
 end

You might be wondering why fizzim.pl didn’t complain about the loopback path on IDLE before
we added the transition priorities. For that matter, why doesn’t it complain about the exits from
DLY? One is “ws” and the other is “1” (because this is the default value for the transition
attribute “equation” that was set in the Global Attributes – fizzim sets it this way by default), and
they both have the default priority of 1000.

The answer is that the equation value of “1” gets special handling by fizzim.pl.

Fizzim Fizzim 53

9.2 The special case of equation equal to “1”

OK, let’s go back to the original Cliff Classic state machine. We’ll turn equation visibility to YES
so that all the transition equations are visible (they were previously set to “Only non-default” to
suppress all the “1” equations):

Why don’t I need a “!go” equation on the IDLE loopback (and “!ws” on the DLY to DONE
transition)?

The answer is that fizzim.pl has some special rules regarding transition priority and equations
equal to “1”. First, if two exit transitions have the same (or no) priority set, the one with the
always-true equation (“1”) is assumed to have lower priority, and no warning is issued. Similarly,
if there are only two exit conditions and the always-true one is the lower priority (either due the
rule above or because it has explicitly been set), no warning is issued.

So, fizzim.pl sees the transition equations from IDLE as “go” and “1”, and assumes that “1” is the
default (lower-priority) transition.

But there’s a little more to this than just saving some typing. It allows fizzim.pl to output Verilog
code that matches what most designers would have written had they coded this by hand. You
wouldn’t write:

Fizzim Fizzim 54

 case (state)
 IDLE : begin
 if (go) begin
 nextstate = READ;
 end
 else if (! go) begin
 nextstate = IDLE ;
 end

You’d write this:

 case (state)
 IDLE : begin
 if (go) begin
 nextstate = READ;
 end
 else begin
 nextstate = IDLE ;
 end

You’d look at the state diagram, recognize that the loopback was the default, and make it the
“else” condition.

But fizzim has no easy way of inferring what is the default condition. So, you have to tell it –
either by leaving the equation as “1”, or using explicit priorities.

That’s what priority is for – to tell fizzim.pl what the order of the “if” statement ought to be.

If you don’t like this feature, you don’t have to use it. Let’s add the “missing” equations:

Fizzim Fizzim 55

The Verilog output now looks like this:

 // comb always block
 always @* begin
 nextstate = 3'bx ; // default to x because default_state_is_x is set
 case (state)
 IDLE : begin
 // Warning P3: State IDLE has multiple exit transit ions, and
transition trans0 has no defined priority
 // Warning P3: State IDLE has multiple exit transit ions, and
transition trans5 has no defined priority
 if (go) begin
 nextstate = READ;
 end
 else if (! go) begin
 nextstate = IDLE ;
 end
 end
 DLY: begin
 // Warning P3: State DLY has multiple exit transiti ons, and transition
trans2 has no defined priority
 // Warning P3: State DLY has multiple exit transiti ons, and transition
trans3 has no defined priority
 if (ws) begin
 nextstate = READ;
 end
 else if (! ws) begin
 nextstate = DONE;
 end
 end
 DONE: begin

Fizzim Fizzim 56

 begin
 nextstate = IDLE ;
 end
 end
 READ: begin
 begin
 nextstate = DLY;
 end
 end
 endcase
 end

Except for the warnings, this is what you would expect.

The warnings are telling you that you have two non-1 transition equations and haven’t defined
their priorities. You and I know that they are mutually exclusive, but fizzim.pl doesn’t parse the
equations, so it doesn’t know. So, it warns you.

But you can easily turn the warnings off. To turn off this specific warning, use the –nowarn
switch:

fizzim.pl –nowarn P3 < cliff.fzm > cliff.v

You can also turn off whole groups of warnings (“P” means priority warnings) by just using the
letter:

fizzim.pl –nowarn P < cliff.fzm > cliff.v

So, if you prefer to always use explicit equations, and never use priorities, just use “-nowarn P”
when you invoke fizzim.pl.

For more on suppressing warnings, see the tutorial.

Fizzim Fizzim 57

10 Brief overview of advanced features

Fizzim has a number of other features not described here. For a complete tutorial and
documentation, please visit my web page www.zimmerdesignservices.com.

Here is a short list of the more advanced features:

10.1 Gray codes

Individual transitions can be marked for gray coding, and fizzim.pl will choose an appropriate
state encoding (if one exists).

10.2 Stubs

Rather than have every transition arc between states shown the diagram, it is possible to have
transition arcs “stub out”, meaning they go to (and come from) stub connectors labeled with the
destination (and source) state.

10.3 Controlling internal signals

Fizzim’s internal signals (like state and nextstate) can be renamed using command line switches on
fizzim.pl. They can also be brought out as ports, using either the internal name or a different
name.

10.4 Inserting code

You can use attributes to insert arbitrary pieces of code at strategic places in the Verilog output
(such as before the module statement, after the module statement, etc).

In particular, this can be used to insert a line to “`include” a file.

Also, there is an attribute to insert code from another file at the top of the Verilog output,
specifically for reading in the copyright statement.

This is described in the tutorial.

10.5 Comments

You can use the comment field in the attributes table to comment both the diagram and the code.
Details of which comments carry over into the Verilog code are described in the tutorial.

Fizzim Fizzim 58

10.6 Multiple pages

Fizzim has multiple pages. You can easily move states and the attributes table between pages.
The transitions are handled via interpage connectors. This is all transparent to fizzim.pl and thus
to the Verilog output.

10.7 Forcing the state vector

Although not directly supported by fizzim (because the state vector width is determined on the
fly), it is possible to force the state vector values. The techniques are described in the tutorial.

10.8 Controlling and suppressing warning messages

Warning messages can be suppressed individually and in groups. Output can be directed to the
Verilog output (as comments), to STDERR, or both. This is described in the tutorial.

10.9 Printing and exporting the state diagram

Fizzim gives you several options for printing and exporting the state diagram. This is described in
the tutorial.

10.10 Specifying the backend command and options

There is a special “state machine” attribute called “be_cmd” that can be used to specify what the
backend code generation command should be. Some day, this will be used to allow users to run
the backend directly from the gui. For now, fizzim.pl will parse the command for its own options
and configure itself accordingly. So, if you always want “-nowarn P3”, you can set be_cmd to:

fizzim.pl –nowarn P3

And you’ll never get P3 warnings.

Options given directly on the command line override conflicting options from be_cmd.

Fizzim Fizzim 59

11 Future directions / wish list

• Multi-page print
• Better support for pages sizes other than 8-1/2 by 11.
• (Limited?) parsing of `include files for `defines and/or parameters to allow their use as

values for reg outputs.
• Add a “-terse” (or “-cliff”?) option to output the minimum code necessary (suppress

unnecessary wire/reg statements, begin/end, etc)

Fizzim Fizzim 60

12 Conclusion

Fizzim is a freely available, open source fsm design tool. We hope that fizzim will provide ASIC
designers with a valuable new tool for designing their state machines and that others will make
use of the open source nature of the tool to add new features and make these available to all.

Fizzim Fizzim 61

13 Acknowledgements

The authors would like to acknowledge the following individuals for their assistance:

Bruce Lavigne – Hewlett Packard
Mark Gooch – Hewlett Packard
Jon Watts – Hewlett Packard

Cliff Cummings – Sunburst Design

Fizzim Fizzim 62

14 References

(1) Synthesizable Finite State Machine Design Techniques Using the New

SystemVerilog 3.0 Enhancements
Cliff Cummings

 Synopsys Users Group 2003 San Jose
 (available at www.sunburst-design.com)

(2) State machine design techniques for Verilog and VHDL

Steve Golson
Synopsys Users Group 1994 San Jose
(available at www.trilobyte.com)

(3) Coding And Scripting Techniques For FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs
Cliff Cummings

 Synopsys Users Group 2000 Boston
 (available at www.sunburst-design.com)

